CMIS 102 Hands-On Lab
Week 5

Overview

This hands-on lab allows you to follow and experiment with the critical steps of developing a program
including the program description, analysis, test plan, design (using pseudocode), and implementation
with C code. The example provided uses sequential, selection and repetition statements.

Program Description

This program will calculate the average of 10 positive integers. The program will ask the user to enter 10
integers. If any of the values entered is negative, a message will be displayed asking the user to enter a
value greater than 0, and the program will ignore the negative input and ask for a valid value. The
program will use a loop to input the data.

Note that the program will always expect 10 positive integers to be entered. If a negative number is
entered, the user needs to enter a positive number to replace it.

Analysis

| will use sequential, selection and repetition programming statements.

| will define three integer variables: count, value and sum. count will store how many times values are
entered. value will store the input. sum will store the sum of all 10 integers.

| will define one double variable: avg. avg will store the average of the ten positive integers input.

The sum will be calculated by this formula:
sum =sum + value
For example, if the first value entered was 4 and second was 10:
sum =sum+value=0+4
sum=4+10=14
Values and sum can be input and calculated within a repetition loop:
while count < 10
Input value
sum = sum + value
End while

Avg can be calculated by:
avg = sum / count

A selection statement can be used inside the loop to make sure the input value is positive, and that only
positive values are included in the sum.

If value >= 0 then
count=count + 1
sum = sum + value

Else
input value

End If



Test Plan

To verify this program is working properly the input values could be used for testing:

Test Case

Input

Expected Output

1

value=1
value=1
value=1
value=0
value=1
value=2
value=0
value=1
value=3
value=2

averageis 1.2

value=100
value=100
value=100
value=100
value=100
value=200
value=200
value=200
value=200
value=200

average is 150.0

value=100
value=100
value=100
value=100
value=-100
value= 100
value=200
value=200
value=200
value=200
value=200

Value must be positive
average is 150.0

Pseudocode

/I This program will calculate the average of 10 po

/I Declare variables

Declare count, value, sum as Integer

Declare avg as double

/lnitialize value

sitive integers.




Set count=0
Setsum=0

/I Loop through 10 integers
While count < 10
Print “Enter a Positive Integer”
Input value
if (value >=0)
sum = sum + value
count=count+1
else
Print (“Value must be positive”)
End if
End While

/I Calculate average
avg = sum/count

[l Print results

Print “Average is “ + avg

C Code

The following is the C Code that will compile and execute in the online compilers.
/I C code

/I This program will calculate the average of 10 po sitive integers.
/I Developer: PUT I N YOUR NAME

/I Date: PUT | N DATE PROGRAM DONE
#include <stdio.h>

int main ()
{
[* variable definition: */
int count, value, sum;
double avg;
/* Initialize */
count=0;
sum = 0;
/I Loop through to input values
while (count < 10)
{
printf("Enter a positive Integer\n™);
scanf("%d", &value);
if (value >=0)
{
sum = sum + value;
count = count + 1;
}
else {
printf("Value must be positive\n");
}

}



/I Calculate avg. Need to type cast since two integ ers will yield an integer

avg = (double) sum / count;
printf("average is %If\n " , avg );
return O;

Setting up the code and the input parameters in ideone.com:

Note the input integer valuesare 1,1, 1,0, 1, 2, 0, 1, 3, 2 for this test case. You can change these values
to any valid integer values to match your test cases. You should also test with a negative number to
make sure the positive integer logic works properly.

T T D T T A o el e e e et m
ideone.co
</> source code fullscreen ™
-
1 J/ C.code
2 // This program will calculate the average of 1@ positive integers. (e
3 // Developer: J. Marcus
4 [ff Date: March 27, 2816
5
6 #include <stdio.h>
7
8 int main ()
9 {
18~ /* variable definition: */
11 int count, walue, sum;
12 double avg;
13+ /* Initialize */
14 count = @;
15 sum = 8;
16 // Loop through to input values
17 while (count < 18)
18 - {
13 printf{"Enter a positive Integer\n");
28 scanf("%d", Rvalue); o
2 if (value >= @) e
22 {
23 sum = sum + value; ge
24 count = count + 1;
25 3 1
26~ else { Wy
27 printf("Value must be positivewn");
& input 8 Output b syntax highlight,

1



Results from running the programming at ideone.com

i#] Ideone.com - ZE... X

€ B @ ideone.com/zEWd3T 1 € Q cdouble %d > O A 4 © =
Q stdin copy "
1

1

1

o

1

2

o

1

3

2

f stdout copy

Enter a positive Integer
Enter a positive Integer
Enter a positive Integer
Enter a positive Integer
Enter a positive Integer
Enter a positive Integer
Enter a positive Integer

Enter

a
a
a

Enter a positive Integer
a
a positive Integer
a

Enter a positive Integer

average is 1.200000

Sphere Research Labs. Ideone is powered by Sphere Engine™
home terms of use api language faq credits feedback & bugs desktop mobile




Learning Exercises for you to complete .

1.

Load the baseline program into a compiler, compile it and run it. Provide a full program listing
(including all comments), and a screen capture showing the input data and the program
executing.

Change the code to average 20 integers as opposed to 10. Support your experimentation with a
full program listing, and screen captures of the input data and the new code executing.

Prepare a new test table with at least 3 distinct test cases listing input and expected output for
the code you created in step 2. Be sure that your test data checks every logic path through the
program. Remember that if you enter a negative input, you need an additional input to make up
for the erroneous input.

What happens if you entered a value other than an integer? (For example a float or even a
string). You will need to modify your code to put in debugging statements that show what is
happening inside the program when erroneous inputs are made. In addition, your test data
should make it easy to tell which input is being made. Support your experimentation with screen
captures of executing the code with the debugging statements.

Modify the code to allow the user to enter an unspecified number of positive integers and
calculate the average. In other words, the user could enter any number of positive integers. You
should not ask the user how many inputs they will have. The program will need to determine
how many numbers have been entered. (Hint: You can use a sentinel value to trigger when the
user has completed entering values. As an alternative, you may use an EOF loop). Prepare a new
test table with at least 3 distinct test cases listing input and expected output for the code you
created. If you use a sentinel loop, be sure to include the sentinel value. Support your
experimentation with a full program listing, including all comments, and screen captures
showing the input data and the new code executing.

Grading guidelines

Submission Points

Successfully demonstrates execution of this lab with online compiler. Includes | 2
a program listing and a screen capture showing the program executing.

Modifies the C code to average 20 integers as opposed to 10. Provide a full 2
program listing (including comments) and screen captures showing the
revised code executing.

Provides a new test table with at least 3 distinct test cases listing input and 1
expected output for the code you created in step 2.

Describes what happens if you entered a value other than an integer. Support | 1
your experimentation with screen captures of executing the code.

Modifies the C code to allow the user to enter an unspecified number of 3
positive integers and calculate the average. Provides a new test table with at
least 3 distinct test cases listing input and expected output for the code you
created. Provides a listing of the full program, including comments, and a
screen captures showing the new code executing.

Document is well-organized, and contains minimal spelling and grammatical 1
errors.

Total 10




